
Gridspace IAP 2023
Project 2

January 16, 2023

Week 2: Language and Lexers

Due Friday 20th Jan, Presentations Monday 22nd

Fine Tune GPT-3

This week we focused on linguistics, and the complex problem of language
representation. Computers understand numbers, and in their essence, ML
programs are trained to pick up on patterns in vectors. It then follows, that
our ability to successfully transform a sentence into a vector representation
without loss of the information we wish to encode, is a large part of what
determines the success of our model.

For this week, we want to push you to play with some of the state of the
art Large Language Models in the field. The key takeaway from this project
should be just how easy it is to build off these, and just how powerful having
free access to these highly trained models is.

GPT-3 (of which ChatGPT is a derivative) is amongst the most famous
of these. It is a generative model, trained to predict the next word in a
sentence, given the sentence preceding it. It works through a ’prompt’ and
’response’ method, and can be fine-tuned on any dataset formatted as

{"prompt": "<text>", "completion": "<ideal response>"}

{"prompt": "<text>", "completion": "<ideal response>"}

1



{"prompt": "<text>", "completion": "<ideal response>"}

...

ChatGPT and InstructGPT work by the same prompt:response principle.

Exercises

Code File: Colab Notebook

Exercise 1: Prepare Data and Fine Tune model

Choose an application to fine tune GPT-3 on, where you may be able to find
data of the prompt:response format. A great example of this could be jokes,
which often take this form. Perhaps you want a specific type of humour, or
styling?

Source your dataset. As always, the option to use Harper Valley is open
to you (What if you prompt with a dialog act and it generates a sentence?),
however, feel free to find or curate your own. You may wish to do this step
first, and choose or alter your application based on what data is available.

Split your dataset into training and test data. The exact percentage split
we leave to your own judgement.

Load your dataset and process it into the ”prompt”:”response” form given
above, then use the training procedure written by OpenAI to fine tune your
model.

Exercise 2: Evaluate and Discuss

Test it! Feed it unseen prompts. What did it capture well, what did it mess
up on, and are there any failure modes you can identify? Where does it make
use of your fine-tuning, and where is it still generating based on the original
weights (i.e., the fine tuning did not affect that part of the model and so the
weights are unchanged from the base model).

Construct new prompts. Show us some of your best/favourite examples,
both of successes and failures.

Develop some metrics to observe the quality of your model. Has it lost
some speech quality during fine tuning? Use ROUGE and BLEU scores to
determine the grammatical/structural quality of the output responses, and

2

https://drive.google.com/file/d/1IiDzkzB6mlBH8M0-Q9dR1ANOH64eCwm9/view?usp=sharing


similarity metrics (e.g. edit distance, or more nuanced variants) to compare
them to the ideal response.

Exercise 3: Improve

Make at least one improvement. Can you process your data differently? Can
you find more data? Can you re-factor your prompts or responses to better
target your desired behaviour?

Optional Additional Exercise: Train your own language model!

This can be any LM you like (feel free to design your own if you’re feeling
up to it!). However, a suggested one would be taking Hugging Face’s im-
plementation of distilBERT, and training it on your corpus (or fine-tuning
a pre-trained version). Whilst we will not reach the level of understanding
that GPT-3 demonstrates, it is reasonable to train your own language model
on a small set of data, to mimic human sentence generation. Can you make
one write a poem?

We will not be providing starter code, but instead linking to several tu-
torials on this topic. It is a fun exercise and one that can nurture a greater
appreciation for how these LLMs capture sentence information.

How a language model is trained:

• BERT (Bi-directional Encoder Representation with Transformers. Kind
of a dumb name.) is an ’out-of-the-box’ model. You can load it from
scratch, which is the model architecture but not trained on any data,
or you can laod a pretrained model that has already been trained on
large amounts of text data.

• A new model will have no concept of language, think of it as a baby.
Whatever you train it with, it will take as law, and learn the laws of
its training set, probably in ways you don’t expect (especially for small
datasets). This has the advantage of more power to train a model of
language from scratch.

• Pretrained models have the advantage of being trained on far larger
datasets, and far more compute power, than any individual can hope
to achieve. As a result, it already knows the basics of language and
grammar. Disadvantages include less flexibility in how you want to

3



apply it (you are dealing with an adolescent, it thinks it knows it all).
However, fine tuning such a model can achieve some amazing results,
by leveraging the knowledge it already has and simply encouraging it
to specialize on a new dataset.

• Pick your route, depending on your goals. Do you want to train a baby
to learn your rules and your rules alone? Or would you rather take a
teenager and nudge them towards your task?

Materials Provided

• GPT-3 Fine Tuning Starter Code

• Tutorial links for LM training and fine-tuning

Readings

• https://huggingface.co/blog/how-to-train

• https://huggingface.co/transformers/v4.8.2/training.html

4

https://drive.google.com/file/d/1IiDzkzB6mlBH8M0-Q9dR1ANOH64eCwm9/view?usp=sharing
https://huggingface.co/blog/how-to-train
https://huggingface.co/transformers/v4.8.2/training.html


5


